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! Abstract—Protein-molecule interactions are promoted by the
physicochemical characteristics of the actors involved, but struc-
tural information alone does not capture expression patterns,
localization and pharmacokinetics. In this work we propose an
integrative strategy for protein-molecule interaction discovery
that combines different layers of information through the use
of convolutional operators on graph, and frame the problem
as missing link prediction task on an heterogeneous graph
constituted by three node types: 1) molecules 2) proteins 3)
diseases. Physicochemical information of the actors are encoded
using shallow embedding techniques (SeqVec, Mol2Vec, Doc2Vec
respectively) and are supplied as feature vectors to a Graph Au-
toEncoer (GAE) that uses a Heterogeneous Graph Transformer
(HGT) in the encoder module. We show in this work that HGT
Autoencoder can be used to accurately recapitulate the protein-
molecule interactions set and propose novel relationships in
inductive settings that are grounded in biological and functional
information extracted from the graph.

Index Terms—Heterogeneous graph, Graph Neural Networks,
Graph Autoencoder, Protein-protein interactions, Inductive in-
ference on graphs

I. INTRODUCTION AND PREVIOUS WORK

N ORDER TO interact with and influence the expression
I of a target protein, a chemical compound needs to 1) access
the same bodily (e.g. the blood-brain barrier) and cellular
compartment of the target [4] 2) being absorbed and degraded
with a kinetic that is compatible with the metabolism of
the target 3) present a chemical structure that is suitable for
binding to some active site on the target protein.

Much of the literature in this domain focuses on requirement
3) [16], whereas the other factors are also essential to exert
any kind of biological function. Hence, focusing solely on
the chemical properties of the actors results in the selection
of molecules which fall short on the promise to modulate
the functionality of e.g. a target enzyme, although they may
perform well in in wvitro assays. Moreover, when dealing
with a complex pathway of interacting proteins, it is not
clear how to select a suitable target: the intrinsic collaborative
fashion through which genes and proteins interact may lead
to the emergence of ’salvage routes’[3], which render the
modulation of a single component ineffective. This notion is
inherently stored in the vast wealth of knowledge built upon
the known interactions between molecules and proteins, and
in turn proteins with other proteins. We must add to this
information the existing mechanistic knowledge regarding the
role that a protein plays in the context of a particular disease.
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A. Current work contributions

When predicting the potential for a molecule to interact
with a certain protein (or pathway) we can frame the problem
as 'missing link prediction’ task of an heterogeneous graph
constituted by three entities: 1) molecules 2) proteins 3)
diseases (fig.I-A).
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Fig. 1. Structure of the heterogeneous graph used in this work. The
relationships listed are used for message passing

In order to integrate physicochemical data with interactomic
information stored in the graph we calculate shallow embed-
dings for each entity (using respectively MOL2VEC, SeqVec
and Doc2Vec) and feed these vectors to the downstream
model.

We wish to address the requirements for inference of novel
protein-molecule interactions by using a modified version of
a Graph Autoencoder (GAE) which handles heterogeneous
data and performs inductive inference by the means of an
encoder structure that uses a stack of Heterogeneous Graph
Transformer (HGT) convolutional layers. We show that HGT
GAE performs consistently better than popular alternatives
(SAGE [7], GAT [18]), and it can be used for inductive
inference on novel molecules/proteins.

II. MATERIALS AND METHODS
A. Datasets

We derived the drug-target interaction network from the
publicly available datasets availble on SNAP [21]. The se-
lected network aggregates high-throughput experimental data,
manually curated datasets, and the results of several prediction
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methods into a single global network of chemical-gene inter-
actions. The number of drug nodes is 1774, the protein nodes
are 17984 and the number of edges between them is 131034.

The protein-protein network was downloaded from the
SNAP data repo as well. It includes direct (physical) protein-
protein interactions, as well as indirect (functional) associa-
tions between human proteins. Nodes represent proteins and
edges represent associations between them.

Disease description, disease class and protein associations
were taken from DisGeNET [13].

B. Node features embedding per entity type

Each one of the entity types represented in the graph bears
useful information in addition to the graph context it resides
in. For 1) proteins (p;) is the aminoacid sequence which
is related to the overall secondary and tertiary structure, as
well as active sites architecture, for 2) molecules (m;) is the
chemical properties, while for 3) diseases (d;) is a general
textual description related to the characteristics of the disease
and often its bodily localization (e.g. colorectal cancer).

Embeddings of this information are generated and then used
as feature vectors in the message passing procedure performed
by the encoder (see fig.II-C1A).

1) SeqVec[8] was used on FASTA protein sequences to
produce vector embedding p; € R'0?4. This approach
exploits the deep bi-directional model ELMo taken from
natural language processing (NLP) to generate embed-
ddings that capture the biophysical and biochemical
properties of protein sequences from unlabeled big data
(UniRef50).

2) MOL2VEC [10] on SMILES molecular sequences to
produce vector embedding m; € R3°°, MOL2VEC is an
unsupervised machine learning approach that learns vec-
tor representations of molecular substructures that point
in similar directions for chemically related substructures.

3) Doc2Vec [11] on the textual representation of disease
descriptions to generate vector embedding d; € R?).
Disease description, disease class and protein associa-
tions were taken from DisGeNET [13].

C. Model architecture

The model follows the architecture of a Graph AutoEncoder
(GAE), which is used in different contexts to predict missing
associations between nodes [2], [14].

As the graph built for this work is heterogeneous, the
message-passing aggregations are combined across different
node types through a reduce operation. The encoder is com-
posed of a series of convolutional operators (Heterogeneous
Graph Transformer [HGT]) which produce embeddings of the
entities between which we want to predict missing associations
(molecules, proteins). The decoder performs the dot product
of embedding vectors whose output is fed to a cross-entropy
loss function that evaluates the reconstruction capabilities of
the model end-to-end. As in classical GAEs, the goal is to re-
construct the original adjacency matrix (A) assuming missing
links refer to unknown associations between molecules and
proteins.

Definition 1. HeterogeneousGraph: A heterogeneous
graph is defined as a directed graph G = (V, E, A, R) where
each node v € V and each edge e € E are associated with
their type mapping function 7(v) : V' — Aand ¢(e) : E — R,
respectively.

GraphNeuralNetwork (general framework): we can
generalize the convolutional operator in a graph context by
expressing it as a neighborhood aggregation or message pass-
ing scheme. With z¥~! € R denoting node features of node
i in layer (k — 1) and e;; € RP denoting edge features from
node j to ¢, message passing graph neural networks can be
described as

zy = ’Vk(xf_l’Dje(N(i)ﬁbk(x?_lvx?_l’ejvi))

where [J denoted a differentiable, permutation invariant
function, an aggregation function e.g. sum, mean or max,
and ~y and phi denote differentiable functions such as MLPs
(Multi Layer Perceptrons). ¢ represents an extraction opera-
tion, which blends information originating from the neighbours
with the target node’s features.

1) Encoder: The encoder structure is modeled after the
Heterogeneous Graph Transformer (HGT) [9] architecture.
HGT builds node representations for proteins, molecules and
diseases by performing heterogeneous mutual attention
and heterogeneous message passing. Given a sampled
heterogeneous sub-graph, HGT extracts all linked node pairs,
where target node ¢ is linked by source node s via edge e,
identifying meta relation (¢, e, s).

Heterogeneous mutual attention uses a distinct set of pro-
jection weights for each meta relation to calculate the attention
matrix for h heads (Attention). Parallel to the calculation of
mutual attention, heterogeneous message passing uses a type-
specific projection matrix and concatenates all i messages for
each node pair (Message).

The next step consists of a target-specific aggregation step
that uses the attention vector as the weight to average the
corresponding messages from the source nodes and get the
updated vector representation of node ¢, H:

Hy1[t] = ®Ovsen) (Attentiongar (s, e, t)xMessagegar (s, e, t))

where N is a function that lists the neighboring nodes of ¢ to
aggregate information to the target node from all its neighbors.

The output of the encoder are two tensor both of shape
(n,e), where n is number of proteins/molecules in the batch
and e is the embedding tensor length.

D. Decoder and loss function

The decoder uses the dot product between protein and
molecule representations followed by a sigmoid activation
function to generate a scalar output that is fed to the loss
function.

Model parameters were optimized using the cross-entropy
loss:

J(i,5) = —logp” — E,p(jlog(l — p™)

where (7, j) represents an observed edge, while (i,n) is a
random edge obtained through negative sampling, as in [12].


https://snap.stanford.edu/biodata/datasets/10008/10008-PP-Decagon.html
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Fig. 2. A) Embedding strategies. SeqVec[8] was used on FASTA protein
sequences, MOL2VEC [10] on SMILES molecule sequences and Doc2Vec
[11] on the textual representation of disease descriptions B) Model architecture

ITI. RESULTS
A. Benchmarking against related methods

In order to comparatively assess the results obtained on the
graph dataset using different methods the Brier score was used.
This metric measures the accuracy of probabilistic predictions,
and it is used instead of e.g. AUC when a calibrated measure
of error is needed. A calibrated model is needed for a binary
classifier when not only the ranking of the outcomes is
required, but also their relative distance in terms of importance.
The Brier score is formulated as:

N

1
BS = N Z(ft —0r)?

t=1

in which f; is the probability that was forecast, o; the actual
outcome of the event at instance ¢ (0 if it does not happen 1
if it happens) and N is the number of forecasting instances.
Therefore, the lower the Brier score is for a set of predictions,
the better the predictions are calibrated.

The HGT encoder was benchmarked against related meth-
ods that could be used to predict novel graph associations: a
baseline multi-layer perceptron model (MLP), SAGE [7] and
GAT[18]. Both SAGE and GAT are inductive methods that can
be similarly used for link prediction on heterogeneous graphs.
Results are shown in the table below:

[ MLP (baseline) | SAGE encoder [[ GAT encoder [| HGT encoder |
[ 0.097 £ 0.005 [ 0.048 £ 0.06 [ 0.055 + 0.063 [ 0.032 £ 0.015 ]
TABLE T
HGT PERFORMANCE (BRIER SCORE) COMPARED WITH MLP, SAGE AND
GAT (LISTED PERFORMANCE IS REPRESENTATIVE OF 10 RUNS EACH)

B. Inferred relationships: a qualitative analysis

What follows are instances of downstream analyses that
exemplify the way in which link prediction on graph based
on prior embedded information can be used to uncover (or
support) novel biological associations.

One way the system could be queried is by focusing on
strategies to repurpose existing drugs for which toxicological
and pharmacokinetic data are abundant. Paracetamol (also
known as acetaminophen) [1] is a medication used to treat
fever and mild to moderate pain. Being a drug of choice
for reducing fever, it exerts its effects by inhibiting the
cyclooxygenase and altering the actions of its metabolite
AM404[5]. Among the top gene hits reported by the model
for paracetamol we find MSH2, which is a component
of the postreplicative DNA mismatch repair system.
Evidence of the existing modulatory interaction between
paracetamol and MSH2 is provided by a recent paper
(2021)[19], confirming the validity of the predicted interaction.
Similarly, an interaction between paracetamol and TYRP2
is predicted with high confidence and reported by http:
//genome.cse.ucsc.edu/cgi-bin/hgGene?org=Human&hgg
chrom=none&hgg_type=knownGene&hgg_gene=uc001vlv.6,
although not included in the original dataset used for training
and testing the model.

Most notably, one top predicted interaction of paracetamol,
MAPKI1, may shed light on liver toxicity effects found in
patients following drug overdosage[15]. Paracetamol mediates
hepatotoxicity by modulating the JNK signaling pathway, and
it is the MAPK module itself that activates c-JUN N-terminal
kinase by sequential protein phosphorylation.

To further exemplify the use of graph-derived insights to
uncover novel applications and drug repurposing, we report
that one of the top hits for Apixaban (a well known anticoag-
ulant) is NR4A2. This protein is involved with others in the
amplification of thromboinflammatory endothelial responses to
the viral RNA analogue poly(I:C) [17], which in turn promotes
the localized activation of platelets and the blood coagulation
mechanism. This is also true for some of the inflammatory
consequences found in Covid-19 patients, for which Apixaban
is used as anticoagulation therapy [20].

Interestingly, the predicted interaction between apixaban
and PDK1 was also recently reported by a different com-
putational screening for the identification of schistosomicidal
agents [6].

I'V. CONCLUSIONS AND FUTURE WORK

In this work we show how molecule-protein interactions can
be inferred by integrating physicochemical and interactomic
data through the use of shallow embedding methods and HGT
AutoEncoders.

It is to be noted that the information that can be integrated
in this graph model is greater than what portrayed in this
proof-of-concept study: enzymes active sites location and
description, expression level profiles, genomic coordinates and
the presence of transcription factor binding motifs are only
a few examples of elements that would add predictive and
explanatory power to the model.


http://genome.cse.ucsc.edu/cgi-bin/hgGene?org=Human&hgg_chrom=none&hgg_type=knownGene&hgg_gene=uc001vlv.6
http://genome.cse.ucsc.edu/cgi-bin/hgGene?org=Human&hgg_chrom=none&hgg_type=knownGene&hgg_gene=uc001vlv.6
http://genome.cse.ucsc.edu/cgi-bin/hgGene?org=Human&hgg_chrom=none&hgg_type=knownGene&hgg_gene=uc001vlv.6
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